大理石平板的设计及生产现状对策-泊头市久丰量具制造有限公司
当前位置:首页 > 动态中心
分类

热门产品PRODUCT

焊接工装夹具
焊接工装夹具
T型槽平台
T型槽平台
划线平台
划线平台
基础平台
基础平台
柔性工装平台
柔性工装平台
柔性焊接工作台
柔性焊接工作台

大理石平板的设计及生产现状对策

2022-02-18 12:02:58

<一>、微细切削机床的床身设计
机床的床身采用大理石整体加工而成,由于大理石、,可以增加机床床身整体的阻尼系数,提高机床整体隔震性能,大理石平台避免加工过程中由外力引起机床振动的现象。同时,大理石材质致密、,使用磨削加工可至镜面级精度,加之经过长期的时效处理,其组织结构均匀,线性膨胀率,表面无内应力,因此特别适合加工成气体静压支承结构的长直型导轨,有利于提高导轨的精度、刚度、直线度。
机床导轨采用封闭式气体静压支承形式,其工作原理是将具有压力的气体,经调压阀和节流器(小孔截流原理的气孔)输送到导轨表面,再通过出气孔流出,气体流动在滑块与导轨之间形成了稳定的空气薄膜,即为承载气膜,可使导轨与滑块之间处于气体摩擦状态。气浮滑块由4块铝合金板组成形如“口”形的结构,滑块上部与载物台相连接,气浮导轨穿过口字型中部,滑块内部有可连通的气路,当外部通入高压气体,经过滑块内部气路,从滑块表面若干的微小气孔流出,可以在滑块和导轨之间形成具有压力和刚度的气膜,并在滑块的4个角落设置有出气口,以导轨运动时,气膜具有的流动性。在气膜作用下,滑块连接的载物台就可以在导轨上平稳移动。其特点是:滑块与空气膜的摩擦系数,几乎可以忽略不计,摩擦力小,滑块移动时仅需要克服其自身质量所引起的惯性力,有利于提高运动控制系统的控制精度;其承载的重量由气膜刚度决定,而气膜刚度取决于气膜的压力和气膜的面积。从图中可知,该滑块的面积较大,其承载能力远大于微细切削的载荷,可将气膜视为刚体;导轨的运动速度对气膜厚度影响很小,导轨移动直线度较高。因此,该种导轨形式适用于机床的进给运动系统上。
但是气体静压承载式导轨也存在其缺陷,如带有粘性粉尘的空气进入气孔会导致气孔堵塞的现象。因此其对环境和压缩气体的洁净度有较,一般采用过滤的压缩空气,并减少或不使用油雾型切削液,以降低空气中粘性颗粒的数量,保持气路的通畅。滑块出气孔很小的导轨甚至需要使用无油型的空气压缩机;气浮滑块需要加工复杂通气小孔,因此只能使用加工性能较好的金属材料(如铝合金),但由于与导轨并不是一种材料,其热膨胀率不相同,加上气膜厚度较小(一般为5~15μm,气膜过大会导致气膜刚度急剧下降,承载能力降低;太小则会引起气路中产生涡流现象,引起气浮滑块的急剧振动),在气温变化时会导致滑块与导轨之间间隙发生变化,从而影响气膜的厚度。例如导轨装配时为20℃,大理石与铝合金的线膨胀系数差值约为0.8μm/℃,当室温与装配时温度差大于15℃的情况下,气膜刚度就会减少12μm,气膜刚度急剧下降。温差继续增加,甚至会发生大理石导轨与气浮滑块干涉的现象,因此,该设备的运行需要严格的环境温度控制。
<二>、超加工设备和生产现状及对策
通过来国内相关机构的努力,我国超加工设备的水平与相比,已经从20前的望尘莫及到目前的望其项背,少数设备甚至能并驾齐驱。但是,也应看到我国在超数控机床尚未形成产业化,研制的机床或设备样机还无法大规模推广使用。我国数控超加工设备产业化方面存在以下不足:各单位各自为战,自主能力相对薄弱;功能部件发展滞后,对外依存度高,尚未形成较为的化配套体系;缺乏超基础元部件及加工设备设计、制造化标准;大理石平板平台设备精度保持性、运行性及可操作性较差;设备的控制软件及系统能力较弱等。为此,在今后超加工设备的和产业化生产中,应从以下方面加以关注:
(1)重视超加工设备功能部件的,形成化的配套体系。
超车床、超磨床等超加工设备是利用主轴、导轨以及控制系统等超基础元部件的精度零件的加工精度,对于此类设备的关键是超基础元部件及其集成技术。超基础元部件都有的生产厂商,如英国Loadpoint公司生产超主轴、超导轨,德国Hyprostatik公司生产液体静压主轴、液体静压导轨以及液体静压丝杠等基础元部件,这些产品已经形成系列化、标准化。国内虽然具备了超基础元部件研制和生产能力,精度指标也达到了产品的水平,但在模块化、系列化、标准化等方面还存在差距,目前国内没有一家化生产厂家。国内生产的电机、编码器、光栅及多轴运动控制卡等在性能及性等方面与存在较大差距,目前国内研制的超加工设备,检测及电控元器件基本依赖。
应继续加强超基础元部件的和生产能力建设,建立模块化设计及生产的标准,在国内形成超基础元部件配套生产厂家,为超加工设备的产业化生产提供支撑。
(2)注重超加工设备的设计、建立制造及检验标准,提高工程化水平。
除了关注超加工设备关键技术的攻关,也应重视设备的可使用性设计,例如超车床的金刚石刀具对刀系统、在线动平衡系统,大理石划线平台导轨系统,确定性研抛设备的工件误差在位测量系统等,这些部件除了有利于设备精度的提高,很多的是提加工设备的效率及增加操作的便利性。此外在设备的外观造型设计及设备噪音控制等人性化设计方面很应符合满足操作者的舒适性需求。
在目前技术水平下,超加工设备尚存在制造误差、驱动误差、联动误差、伺服匹配误差、受热变形、受力变形、非对称刚度、数控精度等误差来源,使零件加工轮廓不能与设计轮廓重合,表面粗糙度也体现各类频率误差的存在。随着超机床轴系的增多和精度的提高,一方面需要新的设备精度测量表征方法和检测检验手段;另一方面也可以逆向进行超加工设备的精度表征。为此,有一整套超设备制造技术规范与检验检测标准等,这样才能正确评价超加工设备的精度,实现对超加工设备的各类需求。
此外,建立超机床制造行业标准也是实现产业化推广的一个重要因素,这些标准包括超部件静态及动态检测、部件间位置关系的检测与调整、超机床总体验收标准等。
(3)将超加工工艺与设备相结合,为用户提供一体化的解决方案。
超加工设备解禁以后,国内高校、民企和相关各工业部门陆续引进了大量的各类超加工设备,但是正能充分发挥设备性能、应用效果良好的单位很少,主要原因是设备可以从引进,而用户需求的相关工艺却无法引进。国内生产厂家则可以通过为用户提供超加工设备与工艺一体化的解决方案,提高国产超加工设备的市场竞争力。
对于超研磨抛光设备这点尤为重要,由于此类设备是通过可控的去除函数零件的加工精度,因此设备厂家可以将设备工艺参数、不同工具及磨料、不同材料及不同形状零件的去除函数等超加工工艺参数以专家系统或数据库的形式集成到设备中供用户选择使用,同时跟随用户对设备的使用效果,对设备的硬件及软件不断改进和升级,从而提升国产超研抛设备的水平。
(4)以重大项目需求为牵引,优先发展超加工设备。
超加工设备结构功能相对简单,从定制价格及周期用户可能无法承受,这也是国产设备实现产业化的一条捷径。
从“十一五”开始根据产业和技术的发展需求,设立了包括“数控机床与基础制造装备重大专项”在内的16个科技重大专项,这也为功能部件和超加工设备整机的研制和发展提供了契机,相关成果已应用于航空航天复杂零部件的加工。此外“高分辨率对地观测系统”、“规模集成电路制造装备与成套工艺”等重大专项的启动对大口径及精度光学元件的产业化提出了需求,国内相关单位研制成功了磁流变抛光设备、离子束抛光设备等,从而为专项的实施提供了有力技术和装备支撑,提升了我国装备制造水平。即将启动的发动机专项也将为轴承、叶片、喷嘴等发动机键元部件的国产超加工和检测设备的研制和产业化提供有力的。
(5)联合国内从事超加工技术研究的单位、优点互补,组建超加工设备及产业化生产基地。
目前,国内从事超加工技术研究的单位众多,其中包括高校、中科院和各个集团研究所以及应用单位等,但大部分单位均各自为战,研究内容雷同、条件建设重复,从宏观战略层面缺乏统一的规划,有时甚至存在恶意竞争,而且主要目标都是为了解决行业内的任务或型号难题。国内目前虽然也设立了超机床工程技术研究中心(科技部)、超机械加工技术研究应用中心等机构,但成员单位覆盖面有限,且管理松散,从体制和机制上很难正做到各成员单位优点联合。
联合国内技术优点单位,打破行业壁垒,建立超加工设备和产业化实体,同时可考虑吸收民间资本,实现超加工设备的产业化,满足国内各行业的需求。